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Abstract

A sensitivity analysis is conducted to investigate the contribution of rainfall forcing rela-
tive to the model uncertainty in the prediction of soil moisture by integrating the NASA
Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the
Oklahoma region. This study depicts different sources of uncertainty, namely, errors in5

the model input (i.e., rainfall estimates from satellite remote sensing observations) and
errors in the land surface model itself. Specifically, rainfall-forcing uncertainty is intro-
duced using a stochastic error model that generates reference-like ensemble rainfall
fields from satellite rainfall products. The ensemble satellite rain fields are propagated
through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with10

two different approaches: either by perturbing model parameters using the generalized
likelihood uncertainty estimation (GLUE) technique or by adding randomly generated
noise to the model prognostic variables. While the first method only addresses para-
metric uncertainty, the second one addresses both structural and parametric uncer-
tainty. Despite this, a reasonable spread in soil moisture is achieved with relatively few15

parameter perturbations through GLUE, whereas the same ensemble width requires
stronger prognostic perturbations with the standard random perturbation method. The
probability of encapsulating the reference soil moisture simulation increases when the
rainfall forcing uncertainty and the model uncertainty approaches are combined (com-
pared with using only rainfall uncertainty). This improvement is more significant when20

using the GLUE technique to perturb CLSM parameters as opposed to perturbing the
CLSM prognostic variables.

1 Introduction

Soil moisture is a key variable of the land surface water budget. It has an impact
on water, energy and biogeochemical cycles; thus, it plays a major role in many re-25

search fields, such as hydrology, agriculture and ecology. As the availability of in-situ
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measurements is scarce, global soil moisture data rely on satellite retrievals (e.g.,
Njoku et al., 2003; Kerr et al., 2010; Entekhabi et al., 2010) and land surface model
(LSM) simulations (e.g., Wood et al., 1992; Koster et al., 2000). LSM soil moisture
predictions can be enhanced by assimilating near-surface satellite soil moisture obser-
vations through a land data assimilation system (LDAS). Often, such systems utilize5

ensemble-based techniques to update LSM soil moisture predictions in response to
satellite observations of near-surface soil moisture (e.g., Reichle and Koster, 2005).
Proper characterization of the uncertainty in the LSM soil moisture predictions is cru-
cial for the optimal assimilation of the observed near-surface soil moisture data (Reichle
et al., 2008). Advancing hydrologic prediction uncertainty goes beyond soil moisture10

data assimilation. As discussed in Vrugt et al. (2008), to improve hydrologic modeling,
it is necessary to quantify the individual error sources in order to identify which parts
of the model can potentially be improved. Moreover, uncertainty characterization can
provide the decision makers with a better measure of accuracy and precision of model
predictions (Benke et al., 2008).15

A common approach for model uncertainty estimation is the Generalized Likelihood
Uncertainty Estimation (GLUE) method, introduced by Beven and Binley (1992). GLUE
does not consider an optimum model parameter set, but assumes that several param-
eter sets can have equal likelihood to be accepted (“equifinality” assumption). GLUE is
implemented by performing a large number of model runs with different combinations20

of parameter values. By comparing model outputs to a reference (e.g., observations),
each combination of parameters is assigned a likelihood value. Then, the total sample
of simulations is split into behavioral and non-behavioral parameter sets, based on a
cutoff threshold. GLUE has found application in several fields; including conceptual
rainfall-runoff modeling (Lamb et al., 1998; Hossain et al., 2004), distributed hydrologic25

modeling (McMichael et al., 2006), land surface modeling (Hossain and Anagnostou,
2005), and radar-rainfall estimation (Tadesse and Anagnostou, 2005).

On the other hand, a common technique to introduce modeling uncertainty in land
assimilation systems is by directly adding randomly generated noise to the model
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prognostic variables, representing errors in model structure and parameters (in addi-
tion to perturbations in model forcings; Reichle et al., 2007). The present study applies
both approaches for a complete analysis of the contribution of model uncertainty to the
prediction of soil moisture fields.

Rainfall is the dominant meteorological forcing input to the land surface model for5

soil moisture simulations. Therefore, uncertainty in the input precipitation products can
have an important impact on the predicted soil moisture fields and their associated
uncertainty. Hossain and Anagnostou (2006a) have proposed a stochastic error model
(named SREM2D) to generate “ground truth” rainfall ensembles from satellite rainfall
products. Hossain and Anagnostou (2006c), and recently Maggioni et al. (2011), have10

investigated the implication of using SREM2D in representing soil moisture prediction
uncertainty from a land surface model forced with satellite rainfall data. They showed
that soil moisture ensembles from land surface models forced with SREM2D-generated
rainfall adequately capture the soil moisture error characteristics at different spatial
scales.15

In addition to satellite rainfall-only uncertainty, Hossain and Anagnostou (2005) have
explored the effect of the combined (model parameters and rainfall forcing) uncertainty
on the simulation of soil moisture. The parametric uncertainty was represented by
the GLUE technique and the rainfall forcing uncertainty was characterized by a one-
dimensional version of SREM2D. They showed that precipitation uncertainty alone can20

explain only part (between 20 % and 60 %) of the uncertainty in soil moisture predic-
tion. This demonstrates the need for further investigation of the interaction between
rainfall and model errors to optimize the use of satellite rainfall products in land data
assimilation systems.

This study aims at investigating the relative impact of modeling and rainfall forcing25

uncertainties on soil moisture fields simulated by the Catchment Land Surface Model
(CLSM, Koster et al., 2000). Specifically, it builds upon the recent study by Maggioni
et al. (2011) that investigated soil moisture prediction uncertainty associated with er-
rors in rainfall forcing. The present study introduces several novelties that address
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some of the limitations of the earlier work by Hossain and Anagnostou (2005). First,
two different model uncertainty frameworks are compared: the GLUE technique versus
the direct perturbation of model prognostic variables. Second, results are presented
in terms of both surface and root zone soil moisture. Third, our study uses spatially
distributed data and a spatial error model, while the study by Hossain and Anagnos-5

tou (2005) was limited to a one-dimensional simulation that used single point data, thus
neglecting spatial error characteristics. Finally, we use a different land surface model
(i.e., CLSM), which is part of the NASA GMAO (Global Modeling and Assimilation Of-
fice) quasi-operational Goddard Earth Observing System Model, Version 5 (GEOS-5)
system (Rienecker et al., 2008).10

The manuscript is structured as follows. Section 2 provides a description of the area
of interest and datasets. Next, Sect. 3 describes the approach followed to study how
uncertainty in simulated soil moisture is affected by (a) modeling uncertainty, (b) rainfall
forcing uncertainty, and (c) the combination of the two sources. Section 4 provides a
discussion of results, and Sect. 5 summarizes the major findings.15

2 Study area and data

The study area is the Oklahoma region in the United States. Specifically, we use
a 25 km Cartesian modeling grid ranging between 100◦ W and 94.5◦ W in Longitude
and 34.5◦ N and 37◦ N in Latitude (Fig. 1). The study period includes three continu-
ous years from 1 January 2004 to 31 December 2006. The Oklahoma region offers20

a good coverage by the Weather Surveillance Radar 88 Doppler (WSR-88D) network
(Maddox et al., 2002), multi-year satellite rainfall products and a dense network of
hydro-meteorological stations from the Oklahoma Mesonet (Brock et al., 1995). The
Oklahoma Mesonet provides observations with high temporal frequency from 115 auto-
mated observing stations that record several meteorological parameters (rainfall, wind,25

radiation, etc.) and soil moisture at depths of 5, 25, 60, and 75 cm (available ev-
ery 30 min). For the 3-year study period, the soil moisture observations of sufficient
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quantity and quality at all four measurement depths were available only at 21 Mesonet
stations as shown in Fig. 1.

Two rainfall products – the rain gauge-calibrated WSR-88D radar rainfall and the
NOAA CMORPH satellite rainfall – are employed in this study and interpolated to the
25-km Cartesian grid shown in Fig. 1. Along with supplemental surface meteorologi-5

cal forcing data, these radar and satellite precipitation products force the land surface
model at the 25-km grid resolution to generate soil moisture fields. The radar rain-
fall product is from the Stage IV WSR-88D precipitation estimation algorithm, which
consists in a national mosaic of precipitation estimates based on observations from
all WSR-88D radars across the continental US (Fulton et al., 1998). Stage IV data10

represent the best quality WSR-88D rainfall product available at hourly/4-km resolu-
tion and include corrections for ground clutter and anomalous propagation, vertical
reflectivity profile effects and systematic variations of the reflectivity-to-rainfall relation-
ship on the basis of bias estimates through comparisons with rain gauge observations
(Fulton et al., 1998; Lin et al., 2005). The satellite product is the NOAA-Climate Pre-15

diction Center morphing (CMORPH) product, which is based on a unique combination
of passive microwave (PMW) retrievals and Infrared (IR) data (Joyce et al., 2004). In
particular, CMORPH uses motion vectors from half-hourly interval IR images to prop-
agate the relatively high-quality precipitation estimates derived from PMW data. The
spatio-temporal resolution of CMORPH is 8 km/half-hourly. As stated above both radar20

and satellite precipitation datasets are gridded to the 25-km grid and aggregated to a
3-hourly time step to ensure common spatial and temporal scales.

3 Methodology

The NASA Catchment Land Surface Model (CLSM; Koster et al., 2000) constitutes the
modeling scheme to simulate surface and root zone soil moisture in this study. The25

model uses the hydrological catchment as fundamental land surface element. Within
each catchment, the variability of soil moisture is related to topography and to three bulk
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soil moisture variables, representing equilibrium conditions associated with water table
distribution, and non-equilibrium conditions near the surface. CLSM is forced by sev-
eral surface meteorological variables, such as precipitation, humidity, air temperature
and radiation. Precipitation data in this study are from the aforementioned WSR-88D
(Stage IV) and CMORPH products; whereas the other meteorological forcing data are5

extracted from the Global Land Data Assimilation Systems (GLDAS) project (Rodell et
al., 2003; http://ldas.gsfc.nasa.gov), based on output from the global atmospheric data
assimilation system at the NASA GMAO (Bloom et al., 2005). CLSM simulations were
initialized from a spin-up integration by forcing the model with the WSR-88D (Stage IV)
rainfall fields and by looping three times through the 3-year time series of forcing data10

(2004–2006).
The Catchment model was demonstrated in several past studies to realistically de-

scribe soil moisture dynamics (Bowling et al., 2003; Nijssen et al., 2003; Boone et al.,
2004). In a recent study, Maggioni et al. (2011) showed consistency and fairly high
correlations between soil moisture anomaly time series from the OK Mesonet station15

observations and corresponding simulations from the Catchment model forced with
WSR-88D (Stage IV) rainfall.

In this study CLSM is first forced with the WSR-88D (Stage IV) precipitation data to
generate the “reference” soil moisture fields (Fig. 2). Then, CLSM simulations are per-
formed to investigate the contributions of model and rainfall-forcing error in soil moisture20

prediction uncertainty: (i) model uncertainty alone through parameter perturbations
(case M1); (ii) model uncertainty alone through prognostic perturbations (case M2);
(iii) rainfall forcing uncertainty alone (case F); (iv) combination of rainfall forcing and
model (through parameter perturbation) uncertainty (case M1F); and (v) combination
of rainfall forcing and model (perturbing prognostics) uncertainty (case M2F). The un-25

certainty analysis is carried out in terms of both surface and root zone soil moisture
values. Surface soil moisture henceforth refers to the (0–2) cm soil moisture output
from CLSM and to the OK Mesonet soil moisture observations at 5 cm depth, whereas
“root zone” soil moisture is defined as the (0–100) cm soil moisture CLSM output and
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the corresponding depth-weighted average over the 5 cm, 25 cm, 60 cm and 75 cm
OK Mesonet measurements.

Details about the different experiments are described next. Specifically, Sect. 3.1
describes the methodology used to study the model uncertainty alone (left column of
Fig. 2); Sect. 3.2 presents the setup to study rainfall forcing uncertainty alone (middle5

column of Fig. 2), and Sect. 3.3 illustrates the method used to analyze the combined
rainfall and model uncertainty (right column of Fig. 2).

3.1 Model uncertainty

The first framework to characterize the model error (case M1 in Fig. 2) is based on
GLUE. The GLUE approach finds a set of model parameters that are behavioral in10

the sense that they are acceptably consistent with the reference integration. It uses
an informal likelihood measure to detect parts of the model parameter space that pro-
vide acceptable fits to the data. An analysis was conducted in this study to identify a
small subset of parameters for which CLSM exhibits the strongest sensitivity in terms
of simulated soil moisture effects. This was computed with respect to the “reference”15

soil moisture, obtained by forcing the model with radar rainfall and with the original
set of parameters. Each parameter was independently scaled by multiplicative coef-
ficients ranging from 25 % to 400 % of their standard values. Only one parameter at
a time was perturbed with the same scaling factor for all grid cells, while keeping the
other parameters constant; the scaled parameter was held constant for the entire 3-yr20

integration.
The ensemble members of surface and root zone soil moisture fields generated from

CLSM based on each value of the parameter-scaling factor are evaluated in terms of
two performance metrics: efficiency score (Eq. 1) and relative bias (Eq. 2), defined as
follows:25
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ES = 1 −

1
N

N∑
i=1

(
ϑ̂i − ϑi

)2

var (ϑ)
(1)

Relative Bias =

N∑
i=1

(
ϑ̂i − ϑi

)
N∑
i=1

(ϑi )

(2)

where ϑ̂ is soil moisture obtained by the perturbed simulation, ϑ is the “reference” soil
moisture and N is the length of the time series.

Figure 3 shows the above performance metrics (efficiency score and mean relative5

error respectively) versus the parameter value scaling factor (presented in %) for the
two parameters to which CLSM showed the highest sensitivity: the Clapp-Hornberger
parameter (b) and the soil wilting point wetness (wpwet). Metrics are computed for
each grid cell and shown as boxplots, where the central mark is the median, and the
edges of the box are the 25th and 75th percentiles. Results are presented here only for10

the surface soil moisture, but are very similar for the root zone simulations. Efficiency
score ranges between 0.88 and 1 for b, and it ranges from negative values to 1 for
wpwet, while the relative bias varies between −0.3 and 0.1 for b, and between −0.3
and 0.6 for wpwet.

Based on the performed sensitivity analysis, the GLUE parametric uncertainty was15

applied to combinations of the two most sensitive parameters: b and wpwet. Specif-
ically, each set of perturbed parameter values is assigned a likelihood value; in this
study it was chosen to be the efficiency score (Eq. 1), which indicates the correspon-
dence between the model predictions and the “reference” integration. Using a cutoff
threshold of acceptable efficiency scores, the total sample of simulations is then split20

into behavioral and non-behavioral parameter combinations (Fig. 4). This threshold is
defined in terms of a certain allowable deviation of the highest likelihood value in the
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sample, namely, only those combinations of parameters with an efficiency score higher
than 80 % (70 %) for surface (root zone) soil moisture are picked to evaluate the model
parameter uncertainty (case M1). This results in fourteen parameter combinations,
listed in Table 1, which are used to integrate a CLSM ensemble of fourteen members.
For each ensemble member, the same parameter set is used for all grid cells in the5

domain and kept constant during the 3-year integration period.
Alternatively, model uncertainty can be represented by directly perturbing model

prognostic variables (case M2 in Fig. 2). The three bulk soil moisture prognostic vari-
ables of CLSM are surface excess, root zone excess, and catchment deficit. How-
ever, Reichle et al. (2007) observed that perturbations in the root zone excess might10

lead to biases between the ensemble mean and the unperturbed “reference” integra-
tion. Therefore, perturbations are limited to the surface excess and the catchment
deficit. Each ensemble member is subject to randomly generated noise that is added
to the model prognostic variables to represent errors in model structure and param-
eters. Specifically, normally distributed additive perturbations are applied; ensemble15

means are constrained to zero, and time series correlations are imposed via a first-
order autoregressive model. The perturbation parameter values are identical to the
ones listed in Table 2 of Liu et al. (2011), and shown here in Table 2 for complete-
ness. For consistency with case M1, fourteen ensemble members are produced by
perturbing the two model prognostic variables.20

It is worth noting that while case M1 only addresses uncertainty in the model pa-
rameters, approach M2 technically addresses both model structural and parameter un-
certainty. However, the GLUE technique used in M1 provides an objective approach to
characterize modeling uncertainty over data poor regions relying solely on the equifinal-
ity of model parameters determined from model sensitivity studies. M2 is a parametric25

approach requiring independent observations to properly characterize the parameter
values of the statistical perturbation model. Moreover, the character of the ensembles
generated by the M1 and M2 is very different. In the first case, each ensemble mem-
ber will be biased against the reference in terms of long-term mean soil moisture at a
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given grid cell, whereas in case M2 each ensemble member is generally unbiased with
respect to the ensemble mean (or reference).

In Sect. 4 standard normal deviates of soil moisture obtained simulated by the two
methods are compared to standard normal deviates of Mesonet soil moisture obser-
vations to study how the model parametric uncertainty captures the ground measure-5

ments.

3.2 Rainfall forcing uncertainty

The SREM2D rainfall error model (Hossain and Anagnostou, 2006a) is employed here
to determine the error propagation from rainfall forcing to the soil moisture prediction.
SREM2D models the multi-dimensional error structure of satellite retrievals with space-10

time stochastic formulations. The important aspect of SREM2D is its ability to model
not only the spatial variability of rain rate estimation error, but also the spatial structure
of the successful delineation of rainy and non-rainy areas. As real sensor data actually
exhibit spatial clusters of false rain and no-rain area delineations, this characteristic
makes SREM2D capable of capturing the magnitude of the satellite rainfall error and15

variability across scales (Hossain and Anagnostou, 2006b). The input parameters for
the satellite rainfall error model are shown in Table 3. In the study of Maggioni et
al. (2011) it was shown that, compared to a simpler rainfall error model, SREM2D
ensembles provide better encapsulation of the “reference” (WSR-88D) precipitation.

In this study, CMORPH satellite rainfall is perturbed by SREM2D to produce an en-20

semble of twenty-four equiprobable reference-like rainfall realizations. This ensemble
is used to force CLSM to obtain an ensemble of soil moisture fields that represent
the rainfall forcing uncertainty (case F in Fig. 2). In the rain-forcing uncertainty alone,
CLSM parameters are set to their original values.
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3.3 Combined uncertainty

The combined uncertainty is studied by merging the rainfall forcing uncertainty with
the model uncertainty described above. Firstly, four parameter sets out of the fourteen
behavioral parameter combinations were chosen to represent the model parameter
uncertainty in the combined uncertainty experiment. These are: (0.50, 1.15), (0.80,5

1.05), (1.25, 0.90), and (2.00, 0.80) for b and wpwet parameters, respectively, which
represents the widest range of parameter values in Table 1. For each of those four sets
of parameters, six ensemble members were integrated with perturbed CMORPH pre-
cipitation inputs (using the SREM2D rainfall error model), for a total of 24 soil moisture
ensemble members (case M1F in Fig. 2). Secondly, another 24-member ensemble10

of CLSM was integrated by perturbing both forcing precipitation (using SREM2D) and
prognostic variables at the same time. In particular, normally distributed additive per-
turbations were added to the same prognostic variables as in case M2, i.e., surface
excess and catchment deficit. The output from these runs is a soil moisture ensemble
carrying rainfall forcing and model uncertainty (case M2F).15

The combined uncertainty (rainfall forcing+model error) obtained with the two dif-
ferent methods (cases M1F and M2F) is then compared to the uncertainty introduced
by only perturbing rainfall forcing (case F). To quantify the uncertainty associated with
each experiment, exceedance and uncertainty ratios (defined below) are computed for
both surface and root zone soil moisture. Results are described in the next section.20

4 Discussion of results

We first investigate how the modeling uncertainty determined by the two techniques
encapsulates in-situ measurements from Mesonet. Next, we compare the forcing rain-
fall uncertainty alone to the combined modeling and rainfall forcing uncertainty through
soil moisture time series plots and performance metrics.25
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4.1 Model uncertainty analysis

To compare the two model uncertainty approaches (M1 and M2), we focus on anomaly
time series, specifically standard normal deviate time series and associated anomaly
correlation coefficients, which capture the correspondence in phase between model es-
timates and ground observations, disregarding any potential bias or differences in the5

variance (Entekhabi et al., 2010b). Figures 5 and 6 show standard-normal deviate daily
time series of CLSM predicted surface and root zone soil moisture, and corresponding
Mesonet measurements during the three years of 2004, 2005 and 2006 and for both
model error approaches. Daily standard-normal deviates are computed by subtracting
the 2004–2006 mean seasonal (monthly) climatology and dividing by the correspond-10

ing standard deviation. Specifically, Figs. 5 and 6 show standard-normal deviate time
series at two representative Mesonet stations, located, respectively, in the eastern (and
wetter) and western (drier) region of the study area and at the corresponding 25 km grid
cell.

Figures 5 and 6 show that variations in the model predicted soil moisture values are15

consistent with the Mesonet measurements as well as the associated rainfall forcing
variations. Furthermore, the standard-normal deviate time series are consistent be-
tween surface and root zone soil moisture. The domain-average anomaly correlation
coefficients between simulated (ensemble mean) soil moisture and the Mesonet obser-
vations are 0.78 (0.64) for the surface soil moisture (root zone soil moisture) for both20

M1 and M2 modeling uncertainty approaches. At the western station (drier conditions),
correlation is slightly higher than the eastern pixel case (wetter conditions). Specifically,
at the eastern location the anomaly correlation coefficient is 0.53 (0.56) when model-
ing uncertainty is introduced by directly perturbing parameters, and 0.54 (0.56) when
modeling uncertainty is assessed by perturbing model prognostic variables for surface25

(root zone) soil moisture. On the other hand, at the western location the anomaly
correlation coefficient is 0.58 for the surface soil moisture, and it increases to 0.81
for root zone soil moisture, for both model uncertainty approaches. We can conclude
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that correlation coefficients are comparable between the M1 and M2 modeling error
approaches for surface and root zone soil moisture and for both rainfall climatological
conditions.

Although, both model uncertainty approaches capture equally well the measurement
variability from Mesonet stations, when employing the GLUE technique (for both soil5

moisture depths) a reasonable spread in soil moisture is achieved with relatively small
parameter perturbations (four perturbations). We could not obtain the same ensemble
width in the model prognostic experiment using the Liu et al. (2011) parameter val-
ues for the same number of perturbations. This larger ensemble spread from GLUE
approach translates into a better encapsulation of the reference (i.e., Mesonet obser-10

vations) surface and root zone soil moisture.
As discussed above, GLUE is a non-parametric mathematical approach founded

on the concept of equifinality, namely, it identifies sets of parameters with undistin-
guishable model performances with respect to an optimal set of parameters. On the
other hand, the prognostic perturbation method makes assumptions on the model error15

characteristics (i.e., standard deviation, space-time correlation, Gaussian error), which
cannot be known a priori. One could argue that by increasing the variance of the error
model, or by increasing the number of perturbations, we could get ensemble spreads
that are similar to M1. However, determination of the M2 error model parameters would
require independent observations of soil moisture that are not typically available.20

4.2 Model and rainfall forcing uncertainty analysis

In this section, the rainfall forcing uncertainty alone is compared to the combined mod-
eling and rainfall uncertainty through time series plots and performance metrics. Fig-
ures 7 and 8 show time series of surface and root zone soil moisture ensembles during
the warm season of 2005 (June to September) for the following three experiments:25

case F where only rainfall forcing uncertainty is introduced; case M1F which combines
rainfall forcing uncertainty with model uncertainty by perturbing model parameters
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(GLUE approach); and case M2F which includes rainfall forcing uncertainty and model
uncertainty by perturbing prognostics. Figures 7 and 8 also include time series of ref-
erence model soil moisture, which is defined as the output from CLSM forced with
unperturbed WSR-88D rainfall fields. In particular, these figures show time series for
the same representative grid cells as in Figs. 5 and 6, one located in the wetter eastern5

region of the study area (Fig. 7) and one in the drier western part (Fig. 8). Figures 7
and 8 show that for both soil moisture depths, the ensemble envelope is wider when
considering the combined rainfall forcing and model uncertainty through parameter
perturbations (case M1F) compared to the other two cases. Moreover, soil moisture
time series show slightly wider ensemble envelopes for the combined rainfall forcing10

and prognostic perturbations compared to the rainfall forcing alone uncertainty exper-
iment. By comparing the two pixel time series, it can be inferred that more variability
is observed in wetter rainfall conditions for both surface and root zone soil moisture,
which is expected as soil water content variability correlates to rainfall variability and
consequently exhibits stronger dependence on rainfall forcing error.15

As discussed earlier, wider ensemble envelopes derived from the combined rainfall
and model uncertainty will increase the probability of encapsulating the reference soil
moisture simulations. Two metrics are introduced to quantify this effect. Specifically, we
use the exceedance ratio (ER) metric to evaluate the ability of the ensemble integra-
tions to encapsulate the reference predictions and the uncertainty ratio (UR) metric to20

evaluate the accuracy of the ensemble envelope width. These metrics are presented
for the three experiments with respect to the reference modeled soil moisture. The
exceedance ratio is defined as:

ER =
Nexceedance

Nt
(3)

where Nexceedance is the number of times the reference soil moisture falls outside the25

ensemble envelope and Nt is the total number of times and locations. If ER is equal
to 1, it means there is a 100 % probability that the reference will not fall between the
lower an upper bounds of the ensemble envelope, whereas if ER is close to 0, there is
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a low probability that the reference exceeds those bounds, or, in other words, there is
a perfect encapsulation of the reference inside the ensemble envelope.

The uncertainty ratio, on the other hand, represents the ratio of the aggregate width
in the simulated uncertainty relative to the corresponding average actual uncertainty
(with respect to the “reference” soil moisture):5

UR =

N∑
1

(
θ̂i

upper − θ̂i
lower

)
2 ×

N∑
1

∣∣∣θ̂i
ens mean − θ̂i

opt

∣∣∣ (4)

where θ̂i
upper and θ̂i

lower are, respectively, the upper and lower bounds of the simulated

ensemble, θ̂i
ens mean corresponds to the ensemble mean, and θ̂i

opt represents the ref-
erence soil moisture obtained by forcing the model with unperturbed WSR-88D rainfall
fields. A perfect ensemble spread has UR values equal to 1. If UR is less (greater)10

than 1 the ensemble is underestimating (overestimating) the model prediction error
spread, which can translate in excessive (lower) weights given to observations in an
ensemble-based data assimilation system.

ER and UR statistics are computed for each grid cell of the domain. Figures 9
and 10 show frequency histograms of ER and UR metrics for the surface and root15

zone soil moisture. The corresponding mean values of these metrics are reported in
Table 4. Consistent to the time series discussed above, the lowest ER is observed
for the experiment that combines rainfall forcing and model parameter uncertainties
(M1F). Histograms for M1F are shifted towards significantly lower ER values where the
average for surface (root zone) soil moisture is 0.39 (0.35). The complement to 1 of20

the exceedance ratio can also be interpreted as the ensemble ability of encapsulating
the reference. Namely, the simulated ensemble has a probability of 61 % (65 %) on
average of encapsulating the reference ground measurements in the case of surface
(root zone) soil moisture. In comparison, the experiment that combines rainfall-forcing
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uncertainties with model prognostic perturbations (M2F) exhibits only slightly reduced
ER values when compared to the rainfall forcing uncertainty experiment (F). Specifi-
cally, the average exceedance ratio reduces from 0.61 (0.64) in case F to 0.54 (0.59)
in case M2F for surface (root zone) soil moisture.

On the other hand, the UR in case M1F exhibits values that are closer to 1 compared5

to the other experiments. In particular, the average UR is equal to 0.58 (0.45) for sur-
face (root zone) soil moisture when perturbations are based only on the forcing rainfall,
which increases to 0.65 (0.53) and 1.02 (1.08) when adding the model prognostic per-
turbations and model parameter perturbations, respectively. This demonstrates that in
cases F and M2F the ensemble significantly underestimates the average actual soil10

moisture error, whereas in case M1F the ensemble spread is less biased and statis-
tically closer to the average actual error. Furthermore, we note that root zone soil
moisture exhibits slightly higher UR values in the case of M1F and lower UR values for
cases F and M2F. This is related to the fact that variability in the forcing rainfall more
directly influences the upper centimeter soil moisture, whereas variability added to the15

model parameters affects the prediction of both surface and root zone soil moisture
variables.

In summary, the ER and UR metrics indicate that by combining model parametric
uncertainty through GLUE with rainfall forcing uncertainty, variability in soil moisture
prediction error can be well described. Specifically, we showed that this combination20

increases the ability of the ensemble envelope of encapsulating the reference simu-
lation (lower ER), without overestimating the ensemble spread (UR close to 1). On
the other hand, using only rainfall perturbations, or adding prognostic perturbations to
rainfall forcing perturbations, results in an underestimation of the actual soil moisture
errors (UR values significantly lower than 1) and a lower likelihood of encapsulating the25

reference simulations (higher ER values).
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5 Conclusions

In this study we investigated the impact of rainfall forcing errors and model structural
and parameter uncertainty (separately and in combination) on the prediction of soil
moisture using the NASA CLSM. Firstly, we examined how ensemble prediction uncer-
tainty encapsulates the reference ground measurements from Mesonet stations, com-5

paring two model uncertainty approaches. The first approach, the GLUE technique,
uses perturbed model parameters. The second approach adds randomly generated
noise to the model prognostic variables during the land model integration. Both meth-
ods were shown to capture well the soil moisture (temporal) variations measured at
in situ Mesonet stations. However, a difference is observed in the two approaches.10

In fact, the GLUE technique contributed wider ensemble spread in the soil moisture
time series relative to the model prognostic random perturbation method, by applying
the same number of perturbations. This is compelling for different reasons. The first
one is that the GLUE technique (perturbing parameters) only takes into account model
parametric error, whereas perturbing prognostics is more inclusive because it techni-15

cally addresses not only parameter uncertainty, but also model structural uncertainty.
The second reason is that GLUE is a well-established model uncertainty framework,
based on the concept of equifinality, and independent from model calibration, while the
prognostics perturbation approach is based on a priori assumptions on the model error
statistics.20

Next, we compared soil moisture prediction uncertainty derived from rainfall forc-
ing uncertainty alone (case F) against uncertainty derived from combining modeling
and rainfall forcing uncertainty, using both model uncertainty approaches (cases M1F
and M2F). Rainfall forcing perturbations alone provided narrower ensemble envelopes
of simulated surface and root zone soil moisture time series if compared to the ones25

obtained by combining forcing and modeling uncertainties. For what concerns the two
modeling error approaches, prognostic perturbations only added modest variability to
the rainfall forcing uncertainty. On the other hand, the combined uncertainty employing
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direct perturbations of model parameters (case M1F) was shown to produce the widest
soil moisture ensemble envelopes relative to the other two cases, for both soil moisture
depths. This is exhibited in the exceedance and uncertainty ratio metrics. The lowest
exceedance ratio, metric that assesses the capability of the ensemble integrations to
encapsulate the reference, is observed when combining rainfall forcing and model pa-5

rameter uncertainties, while the experiment that combined rainfall-forcing uncertainty
with prognostic perturbations exhibited only slightly reduced ER values relative to the
rainfall forcing uncertainty alone. Moreover, the uncertainty ratio, which measures the
accuracy of the ensemble envelope width, is shown to be close to 1 when perturbations
are added to the model parameters (case M1F). This demonstrates that uncertainty in10

soil moisture is better described by M1F, being the ensemble width closer to the model
prediction uncertainty spread, defined as the difference between the ensemble mean
and the reference model simulation. The accurate estimation of the soil moisture pre-
diction uncertainty spread is encouraging towards the application of this approach in
ensemble data assimilation systems. When rainfall forcing perturbations alone (case F)15

or rainfall forcing and prognostics perturbations (case M2F) are considered, the uncer-
tainty ratios are significantly lower than 1, exhibiting an underestimation of the actual
errors.

This study contributes to the development of the NASA Global Modeling and Assim-
ilation Office (GMAO) land data assimilation system. In particular, it provides valuable20

insights about the interaction between rainfall forcing and model uncertainties in case
of satellite rainfall application in land data assimilation. Along those lines, future studies
should investigate the impact of rainfall and model uncertainty on the assimilation of
remotely sensed soil moisture in a land data assimilation system. Moreover, other land
surface models should be considered, as well as other regions of the world character-25

ized by different hydroclimatic regimes need to be analyzed.
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Table 1. Combinations of parameters with efficiency score higher than 80 % for surface and
70 % for root zone soil moisture.

b/wpwet 0.80 0.90 1.05 1.15

0.50 X X X
0.80 X X X X
1.25 X X X X
2.00 X X X
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Table 2. Parameters for perturbations to the CLSM prognostic variables.

Model prognostic perturbation Type Standard deviation AR(1) time series correlation scale

Catchment deficit additive 0.05 mm 3 h
Surface excess additive 0.02 mm 3 h
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Table 3. SREM2D input parameters.

Units Value

Mean of log-normal multiplicative error dimensionless 1.00
Standard deviation of log-normal multiplicative error dimensionless 0.20
False alarm mean rain rate mm h−1 0.24
No-rain probability of detection dimensionless 0.96
Correlation length for multiplicative error km 90
Correlation length for successful rain detection km 190
Correlation length for successful no-rain detection km 70
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Table 4. Mean exceedance and uncertainty ratios for surface soil moisture (in regular font) and
root zone soil moisture (in italics).

Mean ER (SSM/RZSM) Mean UR (SSM/RZSM)

Case F 0.61/0.64 0.58/0.45
Case M1F 0.39/0.35 1.02/1.08
Case M2F 0.54/0.59 0.65/0.53
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Figures '##!

!'#$!

 '#%!

Figure 1 Map of 3-year (2004-2006) average rainfall, overlaid by a 25 km grid covering the '#&!
experiment domain and locations of OK Mesonet stations (black dots). The triangular symbols '#'!
represent Mesonet stations where sufficient soil moisture observations are available at four '#(!
different depths during the study period Black circles highlight two locations for which soil '#)!
moisture time series are shown in Section 4. This figure corrects for a mistake in Figure 1b of '#*!
Maggioni et al. (2011). '$+!

Fig. 1. Map of 3-year (2004–2006) average rainfall, overlaid by a 25 km grid covering the ex-
periment domain and locations of OK Mesonet stations (black dots). The triangular symbols
represent Mesonet stations where sufficient soil moisture observations are available at four dif-
ferent depths during the study period Black circles highlight two locations for which soil moisture
time series are shown in Sect. 4. This figure corrects for a mistake in Fig. 1b of Maggioni et
al. (2011).
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Figure 2 Experimental setup showing the methodology used to investigate model uncertainty alone (left column), rainfall-forcing $""!
uncertainty alone (middle column), and rainfall-forcing uncertainty combined with model uncertainty (right column). $"&!

Fig. 2. Experimental setup showing the methodology used to investigate model uncertainty
alone (left column), rainfall-forcing uncertainty alone (middle column), and rainfall-forcing un-
certainty combined with model uncertainty (right column).
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Figure 3 Efficiency score (a and b) and relative bias (c and d) as a function of model parameter #"%!
value deviations (presented in %). The Clapp-Hornberger parameter (a and c) and the soil wilting #"&!
point wetness (b and d) parameters are shown. Scales differ for each panel. #"'!

!#()!

!#(*!

 #(+!

Fig. 3. Efficiency score – (a) and (b) – and relative bias – (c) and (d) – as a function of model
parameter value deviations (presented in %). The Clapp-Hornberger parameter – (a) and (c) –
and the soil wilting point wetness – (b) and (d) – parameters are shown. Scales differ for each
panel.
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Figure 4 Efficiency score for different combinations of the parameter values for surface soil #((!
moisture (a) and root zone soil moisture (b). The cutoff threshold of acceptable efficiency scores #($!
is also shown. #(#!
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Figure 4 Efficiency score for different combinations of the parameter values for surface soil #((!
moisture (a) and root zone soil moisture (b). The cutoff threshold of acceptable efficiency scores #($!
is also shown. #(#!

!#(%!

Fig. 4. Efficiency score for different combinations of the parameter values for surface soil
moisture (a) and root zone soil moisture (b). The cutoff threshold of acceptable efficiency
scores is also shown.
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Figure 5 Standard-normal deviate time series for a representative Mesonet station located in the #('!
eastern region of the study area (94.845W – 36.889N, see Figure 1) and for the corresponding #$)!
25km grid cell. Panels a) and b) illustrate model simulations in which parameters are perturbed, #$*!
while panels c and d illustrate model simulations in which model prognostic variables were #$+!
perturbed. Surface (a and c) and root zone (b and d) soil moisture time series are shown. #$"!

  #$(!

Fig. 5. Standard-normal deviate time series for a representative Mesonet station located in
the eastern region of the study area (94.845◦ W–36.889◦ N, see Fig. 1) and for the correspond-
ing 25 km grid cell. Panels (a) and (b) illustrate model simulations in which parameters are
perturbed, while panels (c) and (d) illustrate model simulations in which model prognostic vari-
ables were perturbed. Surface (a) and (c) and root zone (b) and (d) soil moisture time series
are shown.
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Figure 6 Same as in Figure 5 but for a location in the western region of the study area (99.641W #$#!
– 36.831N, see Figure 1).!#$%!

!#$&!

Fig. 6. Same as in Fig. 5 but for a location in the western region of the study area (99.641◦ W–
36.831◦ N, see Fig. 1).
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Figure 7 Surface (a, b, c) and root zone soil moisture (d, e, f) time series during the warm season of 2005 (June to September) for the $$'!
grid cell shown in Figure 5, located in the eastern region of the study area. Panels a and d show the experiment where only rainfall $$(!
forcing uncertainty is introduced; panels b and e show the experiment that combines rainfall forcing uncertainty with model $$)!
uncertainty by perturbing model parameters; and panels c and f show the experiment that combines rainfall forcing uncertainty with $$"!
model uncertainty by perturbing prognostics. Time series of rainfall are also shown on the second axis of each panel.  $$*!

Fig. 7. Surface (a, b, c) and root zone soil moisture (d, e, f) time series during the warm sea-
son of 2005 (June to September) for the grid cell shown in Fig. 5, located in the eastern region
of the study area. Panels a and d show the experiment where only rainfall forcing uncertainty
is introduced; panels (b) and (e) show the experiment that combines rainfall forcing uncer-
tainty with model uncertainty by perturbing model parameters; and panels (c) and (f) show
the experiment that combines rainfall forcing uncertainty with model uncertainty by perturbing
prognostics. Time series of rainfall are also shown on the second axis of each panel.
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Figure 8 Same as in Figure 7 but for the representative 25km grid cell shown in Figure 6, located in the western region of the study $$$!
area. $$#!

 !$$+!

Fig. 8. Same as in Fig. 7 but for the representative 25 km grid cell shown in Fig. 6, located in
the western region of the study area.
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Figure 9 Frequency histograms of Exceedance Ratios (ER) for surface soil moisture (a) and root zone soil moisture (b). $#'!
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Fig. 9. Frequency histograms of Exceedance Ratios (ER) for surface soil moisture (a) and root
zone soil moisture (b).
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Figure 10 Frequency histograms of Uncertainty Ratios (UR) for surface soil moisture (a) and root zone soil moisture (b). $#*!
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Fig. 10. Frequency histograms of Uncertainty Ratios (UR) for surface soil moisture (a) and root
zone soil moisture (b).
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